首页 > 研究生培养 > 博导介绍 > 正文

冯林 FENG Lin

作者:       发布: 2019-11-19      来源:

打印

简历照片1

姓名  冯林   英文名 FENG Lin

出生年月

1984.12.28

籍贯

山东日照

职称

 “卓百”副教授

学历

 博士

电话

 010-82316603

办公室

西办公楼318

系别

 机械工程及自动化

职务

博士生导师

电子信箱

 linfeng@buaa.edu.cn

传真

010-82316603

个人主页

http://shi.buaa.edu.cn/BioMicroRobotics/zh_CN/yjgk/12964/list/index.htm

◆学习经历 Education

 2004/09--2008/06     中国地质大学       电子信息工程 (Electronic Engineering) 学士

 2009/04--2011/03     日本 东北大学       仿生机器人 (Biorobotics             硕士

 2011/04--2014/03     日本 名古屋大学     微纳米系统 (Micro/Nano system)     博士

◆工作经历 Work Experience

 2011/042013/03     日本全球卓越中心(GCOE)       特任研究员

 2013/042015/03     日本文部科学省(JSPS        特任研究员

 2015/042016/08     日产自动车株式会社(尼桑)       自动驾驶(ITS)研究开发部

◆研究领域 Research field

1.           智能微型机器人与微纳米控制系统

(Bio-Micro-Robotics   & Micro/Nano Manipulation system)

2.           生物制造等应用于癌症靶向治疗、组织工程及再生医疗等

(Bio-fabrication   for Cell, Tissue Engineering)

◆荣誉及奖励 Awards

1.           2019-10      北京市科技新星

2.           2018-04   北航青年拔尖人才

3.           2019-08      IEEE WRC国际机器人大会Best Paper Finalist

4.           2019-07      IEEE MARSS国际微小型机器人系统会议 Best Student Award

5.           2018-11      IEEE MHS 2018 Best Poster Award.

6.           2016-10   北京航空航天大学卓越百人

7.           2009-11      IEEE International   Symposium on Micro-Nano Mechatronics and Human Science 2009 (MHS 2009), Best   Paper Award (最佳论文奖).

8.           2010-05      IEEE International   Conference on Advanced Mechatronics 2010 (ICAM 2010), Young Fellow Prize (优秀年轻学者).

9.           2011-05      IEEE Robotics and Automation   Society, IEEE International Conference on Robotics and Automation 2011 (ICRA   2011), Best Video Award (最佳视频奖) .

10.        2011-11      IEEE International   Symposium on Micro-Nano Mechatronics and Human Science 2011 (MHS 2011), Best   Paper Award (最佳论文奖).

◆开授课程 Lectures

1.     Fundamentals of Mechanical Manufacturing Technology For international   students

2.  专业课程实践 大四上学期

◆教学及科研成果

冯林老师团队主要集中在多场控制的微纳米机器人方面研究。微纳米机器人难题在于如何实现高精度无污染、非接触操作,针对这些难题课题组主要取得以下成果:(1 提出零摩擦、非接触磁场和超声悬浮耦合驱动新方法,发表在机嚣人顶级杂志IJRRAPLJAP等;(2)实现基于微机器人的细胞克隆流水线加工方法发表在芯片上实验室Lab chipBiomicrofluidicsIJMSAdvanced Intelligent System.等杂志;他引500多次。相关研究在国际机器人大会ICRAIROS等获奖8次,并多次担任微纳机器人分会主席(ICRA2019IROS2020)。2013年获得JSPS学者,2016年获得北航“卓越百人”,2018年获得“青年拔尖人才”资助,2019年获得“北京市科技新星”, 2019年负责组织申报“智能机器人”重点研发计划,并获批国家重点研发“场控微纳机器人靶向给药”重大课题资助,集合多家优势单位开展微纳机器人在肿瘤治疗方面的研究工作。研究主要集中在场控微纳载药机器人,建立靶向药物输送微纳机器人一体化制造与多场驱动技术体系,为新一代微纳米机器人制备及控制提供理论及方法支持。细胞生物学、生物制造以及再生医疗等领域中,细胞组织级的精密操作显得极为重要,比如克隆、体外受精、人工诱导多能干细胞生长成型等。传统的细胞操纵方法大多采用体积庞大的微操作机械臂,其精度低、可重复性低、价格昂贵、效率低下。因此为了解决这一几十年不变的陈旧技术,我们设计开发出了新型磁控微型机器人,应用于单细胞操作。其具有精度高、控制简单、可重复性高等优势。该微型机器人由磁性材料加工而成,封装于微流控芯片中,通过利用外界磁场的自动化控制,可以有效避免外界环境对细胞的侵染,并极大的提高了操作控制精度。

近年来参与了日本文部科学省多项重大课题研究,并在国际机器人及微纳米学会获得多个奖项。目前在微纳米系统及机械领域发表SCI/EI论文80余篇,其中于20162月在机器人领域最高级别的国际机器人研究杂志(International Journal of Robotics   Research)上发表了关于磁控芯片机器人的创新性研究成果。

___·主持课题与项目·__________________________________________________________

主持或参加的主要科研项目(按时间顺序倒排)

1.           胶囊机器人系统研究,2019-2023年,横向课题,50

2.           光电操作设备中核心光电薄膜的研制,2020-2021年,横向课题,100

3.           国家重点研发计划 靶向药物输送场控微纳机器人基础研究 453

4.           2019-nCoV快速诊断技术与互联网+AI预防控制体系, 子课题负责人 100

5.           JCJQ计划”重点基础研究项目(GF973计划),2019-JCJQ-ZD-120-00,基于植入式芯片与光电**脊髓功能重塑技术研究,2019-122022-121200万在研,参与

6.           北京市科技新星项目 靶向给药场控微纳米机器人技术 2019.11-2021.11  50

7.           北京市自然基金针对细胞级微纳米机器人系统研究 2017.10-2020.6  28

8.           科技委仿生悬停平台器件研究及演示验证2017.7-2018.6  750

9.           科技委仿生智能变色光子晶体纳驱动2017.8-2019.7  100

10.       人才 青年拔尖人才计划 2018-2021  100

11.       人才 卓越百人科研启动经费  2016.10-2017.12  50 

12.       人才 仿生多级结构多场效应创新团队     2017.8-2018.7  100 

13.       基础研究文部科学省Challenge of On-chip Precise Enucleation of Oocyte Using 3D 6DOF   Manipulation 2013.4-2015.3 4,030,000日元

14.       基础研究文部科学省 Autonomous induction monitoring and cell measurement by   ultra-high-speed operation 2013.4-2014.3 122,720,000日元     

15.       Nagoya Univ. GCOE High Speed Enucleation of Oocyte Using   Magnetically Actuated Microrobot on a Chip 2013.4-2014.3    1,000,000日元     

16.       基础研究科技振兴会 Automatic oocyte enucleation manipulation 2011.4-2013.3 2,000,000日元

17.       基础研究文部科学省 Evaluation and dynamic measurement of biomembrane transporter   using on-chip 2008.4-2010.3  49,790,000日元   

___·学术期刊·_______________________________________________________________

 

[1]        Dixiao ChenZiping YangYiming JiYuguo DaiLin FengFumihito Arai, Deformable   ferrofluid-based millirobot with high motion accuracy and high output force. Applied   Physics Lettersvol. 118issue 13(2021) pp: 134101

[2]        Liang, S., Cao, Y., Dai, Y., Wang, F., Bai, X., Song, B., ...   & Feng, L. (2021). A Versatile Optoelectronic Tweezer System for   Micro-Objects Manipulation: Transportation, Patterning, Sorting, Rotating and   Storage. Micromachines, 12(3), 271.

[3]        Chen, Y., Li, Z., Bai, X., Feng, Y., Feng, L., Zhang, D., ...   & Chen, H. (2021). Reduction of Erythrocyte Fluid Adaptability Due to   Cell Membrane Hardening Based on Single-Cell Analysis. BioChip Journal,   15(1), 90-99.

[4]        Chen, Y., Pan, Y., Feng, Y., Li, D., Man, J., Feng, L., ...   & Chen, H. (2021). Role of glucose in the repair of cell membrane damage   during squeeze distortion of erythrocytes in microfluidic capillaries. Lab on   a Chip, 21(5), 896-903.

[5]        Feng, Y., Feng, L., Dai, Y., Bai, X., Zhang, C., Chen, Y., &   Arai, F. A novel and controllable cell-based microrobot in real vascular   network for target tumor therapy.

[6]        Song, B., Zhang, W., Bai, X., Feng, L., Zhang, D., & Arai,   F. A novel portable cell sonoporation device based on open-source   acoustofluidics.

[7]        Dai, Y., Feng, Y., Feng, L., Chen, Y., Bai, X., Liang, S., ...   & Arai, F. Magnetized Cell-robot Propelled by Magnetic Field for Cancer   Killing.

[8]        Bai, X., Song, B., Chen, D., Dai, Y., Feng, L., & Arai, F.   Anticipating tumor metastasis by circulating tumor cells captured by acoustic   microstreaming.

[9]        Bai, X., Bin, S., Yuguo, D., Wei, Z., Yanmin, F., Yuanyuan, C.,   ... & Lin, F. (2020). Parallel trapping, patterning, separating and   rotating of micro-objects with various sizes and shapes using acoustic   microstreaming. Sensors and Actuators A: Physical, 315, 112340.

[10]   Dai, Y.,   Liang, S., Chen, Y., Feng, Y., Chen, D., Song, B., ... & Arai, F. (2020).   Untethered OctopusInspired   Millirobot Actuated by Regular Tetrahedron Arranged Magnetic Field. Advanced   Intelligent Systems, 2(5), 1900148.

[11]   Bai, X.,   Wang, Y., Song, Z., Feng, Y., Chen, Y., Zhang, D., Feng, L. The basic properties   of gold nanoparticles and their applications in tumor diagnosis and treatment,   (2020) International Journal of Molecular Sciences, 21 (7), 论文编号 2480, .

[12]   Bai, X.,   Chen, D., Zhang, W., Ossian, H., Chen, Y., Feng, Y., Feng, L., Arai, F. Magnetically   driven bionic millirobots with a low-delay automated actuation system for   bioparticles manipulation, (2020) Micromachines, 11 (2), pp. 1-10.

[13]   Li, Z.,   Zhang, D., Wang, D., Zhang, L., Feng, L., Zhang, X. A Bioinspired Flexible   Film Fabricated by Surface-Tension-Assisted Replica Molding for Dynamic   Control of Unidirectional Liquid Spreading, (2019) ACS Applied Materials and   Interfaces, 11 (51), pp. 48505-48511.

[14]   Dai, Y.,   Chen, D., Liang, S., Song, L., Qi, Q., Feng, L. A magnetically actuated   octopus-like robot capable of moving in 3D space, (2019) IEEE International   Conference on Robotics and Biomimetics, ROBIO 2019, 论文编号 8961461, pp.   2201-2206.

[15]   Song, B.,   Feng, Y., Zhou, Q., Feng, L. On-Chip Three-dimension Cell Rotation Using   Whirling Flows Generated by Oscillating Asymmetrical Microstructures, (2019)   IEEE International Conference on Intelligent Robots and Systems, 论文编号 8967620, pp.   678-683.

[16]   Feng, L.,   Song, B., Chen, Y., Liang, S., Dai, Y., Zhou, Q., Chen, D., Bai, X., Feng, Y.,   Jiang, Y., Zhang, D., Arai, F. On-chip rotational manipulation of microbeads   and oocytes using acoustic microstreaming generated by oscillating   asymmetrical microstructures. (2019) Biomicrofluidics, 13 (6), 论文编号 064103, .

[17]   Hu, H.,   Yang, X., Song, L., Wei, W., Peng, G., Feng, L. High Position Accuracy and 5   Degree Freedom Magnetic Driven Capsule Robot. (2019) WRC SARA 2019 - World   Robot Conference Symposium on Advanced Robotics and Automation 2019, 论文编号 8931946, pp. 19-24.

[18]   Tovmachenko,   O., Feng, L., Mousa, A.M., Ullah, Z., Masoud, M.A. A capsule-type device for   soft tissue cutting using a threadless ballscrew actuator. (2019) Proceedings   of MARSS 2019: 4th International Conference on Manipulation, Automation, and   Robotics at Small Scales, 论文编号 8860958,   .

[19]   Jiang, Y.,   Shen, D., Liu, M., Ma, Z., Zhao, P., Feng, L., Zhang, D. Fabrication of   graphene/polyimide nanocomposite-based hair-like airflow sensor via direct   inkjet printing and electrical breakdown. (2019) Smart Materials and   Structures, 28 (6), 论文编号 065028, .  

[20]   Feng, L.,   Chen, D., Zhou, Q., Song, B., Zhang, W. Cell injection microrobot development   and evaluation in microfluidic chip. (2019) Proceedings - IEEE International   Conference on Robotics and Automation, 2019-May, 论文编号 8793799, pp.   4831-4836.

[21]   Gong, D.,   Cai, J., Celi, N., Liu, C., Zhang, W., Feng, L., Zhang, D. Controlled   propulsion of wheel-shape flaky microswimmers under rotating magnetic fields.   (2019) Applied Physics Letters, 114 (12), 论文编号 123701, .

[22]   Hu, X.,   Yan, X., Gong, L., Wang, F., Xu, Y., Feng, L., Zhang, D., Jiang, Y. Improved   Piezoelectric Sensing Performance of P(VDF-TrFE) Nanofibers by Utilizing BTO   Nanoparticles and Penetrated Electrodes. (2019) ACS Applied Materials and   Interfaces, 11 (7), pp. 7379-7386.

[23]   Wang, X.,   Cai, J., Sun, L., Zhang, S., Gong, D., Li, X., Yue, S., Feng, L., Zhang, D. Facile   Fabrication of Magnetic Microrobots Based on Spirulina Templates for Targeted   Delivery and Synergistic Chemo-Photothermal Therapy. (2019) ACS Applied   Materials and Interfaces, 11 (5), pp. 4745-4756.

[24]   Chen, Y.,   Feng, Y., Deveaux, J.G., Masoud, M.A., Chandra, F.S., Chen, H., Zhang, D.,   Feng, L. Biomineralization forming process and bio-inspired nanomaterials for   biomedical application: A review. (2019) Minerals, 9 (2), 论文编号 68, .

[25]   Jiang, Y.,   Ma, Z., Cao, B., Gong, L., Feng, L., Zhang, D. Development of a Tactile and   Slip Sensor with a Biomimetic Structure-enhanced Sensing Mechanism. (2019)   Journal of Bionic Engineering, 16 (1), pp. 47-55.

[26]   Song, L.,   Yang, X., Hu, H., Peng, G., Wei, W., Dai, Y., Feng, L. The design of 3-D   space electromagnetic control system for high-precision and fast-response   control of capsule robot with 5-DOF. (2019) Lecture Notes in Computer Science   (including subseries Lecture Notes in Artificial Intelligence and Lecture   Notes in Bioinformatics), 11745 LNAI, pp. 202-212.

[27]   Mousa, A.,   Feng, L., Dai, Y., Tovmachenko, O. Self-Driving 3-legged Crawling Prototype   Capsule Robot with Orientation Controlled by External Magnetic Field. (2018)   2018 WRC Symposium on Advanced Robotics and Automation, WRC SARA 2018 -   Proceeding, 论文编号 8584222,   pp. 243-248.

[28]   Gong, D.,   Cai, J., Celi, N., Feng, L., Jiang, Y., Zhang, D. Bio-inspired magnetic   helical microswimmers made of nickel-plated Spirulina with enhanced   propulsion velocity. (2018) Journal of Magnetism and Magnetic Materials, 468,   pp. 148-154.

[29]   Zhou, Q.,   Song, B., Feng, Y., Feng, L. Cell injection microrobot development and   evaluation in microfluidic chip. (2018) MHS 2018 - 2018 29th International   Symposium on Micro-NanoMechatronics and Human Science, 论文编号 8886994, .

[30]   Feng, L.,   Song, B., Zhang, D., Jiang, Y., Arai, F. On-chip tunable cell rotation using   acoustically oscillating asymmetrical microstructures. (2018) Micromachines,   9 (11), 论文编号 596, .

[31]   Feng, L.,   Zhou, Q., Song, B., Feng, Y., Cai, J., Jiang, Y., Zhang, D. Cell injection   millirobot development and evaluation in microfluidic chip. (2018)   Micromachines, 9 (11), 论文编号 590, .

[32]   Jiang, Y.,   Liu, M., Yan, X., Ono, T., Feng, L., Cai, J., Zhang, D. Electrical   Breakdown-Induced Tunable Piezoresistivity in Graphene/Polyimide Nanocomposites   for Flexible Force Sensor Applications. (2018) Advanced Materials   Technologies, 3 (8), 论文编号 1800113,   .

[33]   Yao, G.,   Feng, L., Zhang, D., Jiang, X. Morphology and Mechanical Properties of   Vibratory Organs in the Leaf-cutting Ant (Atta cephalotes). (2018) Journal of   Bionic Engineering, 15 (4), pp. 722-730.

[34]   Jiang, Y.,   Wang, R., Feng, L., Li, J., An, Z., Zhang, D. Tunable alumina 2D   photonic-crystal structures via biomineralization of peacock tail feathers. (2018)   Optical Materials, 78, pp. 490-494.

[35]   Jiang, Y.,   Gong, L., Hu, X., Zhao, Y., Chen, H., Feng, L., Zhang, D. Aligned P(VDF-TrFE)   nanofibers for enhanced piezoelectric directional strain sensing. (2018)   Polymers, 10 (4), 论文编号 364, .

[36]   Feng, L.,   Wu, X., Jiang, Y., Zhang, D., Arai, F. Manipulating microrobots using   balanced magnetic and buoyancy forces.  (2018) Micromachines, 9 (2), 论文编号 50, .

[37]   Jiang, Y.,   Wang, R., Feng, L., Zhang, D. Mechanochromic response of the barbules in   peacock tail feather.  (2018) Optical Materials, 75, pp. 74-78.

[38]   Feng, L.,   Zhang, S., Jiang, Y., Zhang, D., Arai, F. Microrobot with passive diamagnetic   levitation for microparticle manipulations. (2017) Journal of Applied Physics,   122 (24), 论文编号 243901, .  

[39]   Feng, L.,   Liang, S., Zhou, X., Yang, J., Jiang, Y., Zhang, D., Arai, F. On-chip   microfluid induced by oscillation of microrobot for noncontact cell   transportation. (2017) Applied Physics Letters, 111 (20), 论文编号 203703, .

[40]   Feng, L.,   Di, P., Arai, F. High-precision motion of magnetic microrobot with ultrasonic   levitation for 3-D rotation of single oocyte. (2016) International Journal of   Robotics Research, 35 (12), pp. 1445-1458.

[41]   Turan, B.,   Sakuma, S., Feng, L., Arai, F. Automation of an on-chip cell mechanical   characterization system for stiffness evaluation. (2016) 2015 International   Symposium on Micro-NanoMechatronics and Human Science, MHS 2015, 论文编号 7438327, .

[42]   Feng, L.,   Turan, B., Ningga, U., Arai, F. Three dimensional rotation of bovine oocyte   by using magnetically driven on-chip robot. (2014) IEEE International   Conference on Intelligent Robots and Systems, 论文编号 6943225, pp. 4668-4673.

[43]   Feng, L.,   Hagiwara, M., Ichikawa, A., Arai, F. On-Chip enucleation of bovine oocytes   using microrobot-assisted flow-speed control. (2013) Micromachines, 4 (2),   pp. 272-285.

[44]   Feng, L.,   Sun, Y., Ohsumi, C., Arai, F. Accurate dispensing system for single oocytes   using air ejection, (2013) Biomicrofluidics, 7 (5), 论文编号 054113, .

[45]   Feng, L.,   Ichikawa, A., Arai, F., Hagiwara, M. Continuous enucleation of bovine oocyte   by microrobot with local flow distribution control, (2012) 2012 International   Conference on Manipulation, Manufacturing and Measurement on the Nanoscale,   3M-NANO 2012 - Conference Proceedings, 论文编号 6472969, pp. 59-64.

[46]   Feng, L.,   Hagiwara, M., Ichikawa, A., Sun, Y.L., Arai, F. High-speed production and   dispensing of enucleated oocyte by microrobot on a chip, (2012) 2012   International Symposium on Micro-NanoMechatronics and Human Science, MHS   2012, 论文编号 6492464,   pp. 111-115.

[47]   Feng, L.,   Hagiwara, M., Ichikawa, A., Kawahara, T., Arai, F. Smooth enucleation of   bovine oocyte by microrobot with local flow speed control in microchannel, (2012)   IEEE International Conference on Intelligent Robots and Systems, 论文编号 6386112, pp.   944-949.

[48]   Feng, L.,   Hagiwara, M., Ichikawa, A., Arai, F. On-Chip continuous enucleation by   hydraulic force control using magnetically actuated microrobot, (2012)   Proceedings of the 16th International Conference on Miniaturized Systems for   Chemistry and Life Sciences, MicroTAS 2012, pp. 1270-1272.

[49]   Feng, L.,   Kawahara, T., Yamanishi, Y., Hagiwara, M., Kosuge, K., Arai, F. On-demand and   size-controlled production of droplets by magnetically driven microtool, (2012)   Journal of Robotics and Mechatronics, 24 (1), pp. 133-140.

[50]   Hagiwara,   M., Kawahara, T., Feng, L., Yamanishi, Y., Arai, F. On-chip enucleation of   oocyte by magnetically driven microtools with ultrasonic vibration, (2011)   Proceedings - IEEE International Conference on Robotics and Automation, 论文编号 5979930, pp.   2680-2685.

[51]   Hagiwara,   M., Kawahara, T., Feng, L., Yamanishi, Y., Arai, F. High performance   magnetically driven microtools with ultrasonic vibration for biomedical   innovations, (2011) Proceedings - IEEE International Conference on Robotics   and Automation, 论文编号 5980470,   pp. 3453-3454.

[52]   Uvet, H.,   Feng, L., Ohashi, S., Hagiwara, M., Kawahara, T., Yamanishi, Y., Arai, F. On-chip   single particle loading and dispensing, (2011) Proceedings - IEEE   International Conference on Robotics and Automation, 论文编号 5980449, pp.   3151-3156.

[53]   Feng, L.,   Hagiwara, M., Uvet, H., Yamanish, Y., Kawahara, T., Kosuge, K., Arai, F. High-speed   delivery of microbeads in microchannel using magnetically driven microtool, (2011)   2011 16th International Solid-State Sensors, Actuators and Microsystems   Conference, TRANSDUCERS'11, 论文编号 5969431,   pp. 1312-1315.

[54]   Hagiwara,   M., Kawahara, T., Yamanishi, Y., Masuda, T., Feng, L., Arai, F. On-chip   magnetically actuated robot with ultrasonic vibration for single cell manipulations,(2011)   Lab on a Chip, 11 (12), pp. 2049-2054.

[55]   Hagiwara, M.,   Kawahara, T., Feng, L., Yamanishi, Y., Arai, F. On-chip dual-arm microrobot   driven by permanent magnets for high speed cell enucleation, (2011)   Proceedings of the IEEE International Conference on Micro Electro Mechanical   Systems (MEMS), 论文编号 5734393,   pp. 189-192.

[56]   Feng, L.,   Huseyin, U., Kawahara, T., Hagiwara, M., Yamanish, Y., Arai, F. On-chip   high-speed and on-demand single microbeads loading, (2011) 2011 Int. Symp. on   Micro-NanoMechatronics and Human Science, Symp. on "COE for Education   and Research of Micro-Nano Mechatronics", Symposium on "Hyper Bio   Assembler for 3D Cellular System Innovation", 论文编号 6102195, pp.   291-296.

[57]   Kawahara,   T., Hirano, T., Feng, L., Uvet, H., Hagiwara, M., Yamanishi, Y., Arai, F. High-speed   single cell dispensing system (2011) 2011 Int. Symp. on   Micro-NanoMechatronics and Human Science, Symp. on "COE for Education   and Research of Micro-Nano Mechatronics", Symposium on "Hyper Bio   Assembler for 3D Cellular System Innovation", 论文编号 6102235, pp.   472-474.

[58]   Hagiwara,   M., Kawahara, T., Feng, L., Yamanish, Y., Arai, F. High precision   magnetically driven microtools with ultrasonic vibration for enucleation of   oocytes (2010) 2010 International Symposium on Micro-NanoMechatronics and   Human Science: From Micro and Nano Scale Systems to Robotics and Mechatronics   Systems, MHS 2010, Micro-Nano GCOE 2010, Bio-Manipulation 2010, 论文编号 5669580, pp. 47-52.

[59]   Yamanishi,   Y., Feng, L., Arai, F. On-demand production of emulsion droplets over a wide   range of sizes (2010) Advanced Robotics, 24 (14), pp. 2005-2018.

日本国内

[1]        LFeng, YYamanishi, TKawahara,   MHagiwara, KKosuge, and FArai,   “Robot-on-a-chip Part 1: On-chip Generation of Droplets and Size Control,” in   日本機械学会ロボティクスメカトロニクス講演会, 2010, pp. 1P1–U04.

[2]        萩原将也, 川原知洋, 馮林, 山西陽子, and 新井史人, “双腕マイクロアームの高精度な非接触操作,” in 22回化学とマイクロナノシステム研究会,   2010, p. P.26.

[3]        萩原将也, 川原知洋, 馮林, 山西陽子, and 新井史人, “マイクロ流体チップ内で超高速動作する双腕マイクロロボットによる細胞操作切断,” in 28回日本ロボット学会学術講演会,   2010, pp. 2M2–7.

[4]        LFeng, YYamanishi, TKawahara,   MHagiwara, KKosuge, and FArai,   “Generation of Droplet with Feedback Control on a Chip,” in 22回化学とマイクロナノシステム研究会, 2010, p. P.25.

[5]        LFeng, YYamanishi, TKawahara,   MHagiwara, KKosuge, and FArai,   “On-chip Size-controllable Droplet Generation,” in 11 計測自動制御学会 システムインテグレーション部門講演会, 2011, pp. 3I2–3.

[6]        LFeng, YYamanishi, TKawahara,   MHagiwara, KKosuge, and FArai,   “On-chip Smooth Enucleation by Hydraulic Force Control Using Magnetically   Driven Microtool,” in ロボティクスメカトロニクス講演会, 2012, pp. 1P1–U04.

[7]        平野 達彦, 川原 知洋, ウベット フセイン, 馮林, 新井 史人, “ローディング機構を有する単一細胞分注システム” in12 計測自動制御学会 システムインテグレーション部門講演会, 2012, pp. 1P1–U04

学术与社会服务

1.           2020年中国医药生物技术协会3D打印技术分会生物材料组副组长

2.           2019   IROS 国际机器人大会 微纳米机器人分会主席

3.           2018年开始IROSICRA的副主编(Associate Editor

4.           北航潍坊研究院,智能制造与微纳制造副主任

5.           中国机械工程学会生物制造工程分会 组织委员会:副主任委员

6.           医工交叉高精尖中心双聘研究员

7.           IEEE美国电子电气工程师学会 高级会员

8.           中国机械学会 高级会员

9.           中国微米纳米技术学会 高级会员

10.     中国生物医学工程学会 高级会员

11.     中国细胞生物学会 高级会员

12.     期刊审稿人

<Advanced optical materials>Q1 IF 15.8

<Progress   in Materials Science>Q1 IF 11

< &nbsp; Small > Q1 IF 10

<Nanoscale>   Q1 IF 7.394

<IEEE Transactions   on Automation Science and Engineering> Q1 IF 5.2

<Sensors   and Actuators B> Q1 IF 4.8

<Journal   of nanotechnology>Q1 IF 3.5

<IEEE   Transaction on Robotics Research> Q1 IF 2.6

13.     2021年微纳米技术与医疗健康创新大会,微纳米机器人分会场特邀报告

14.     2020年微纳米技术与医疗健康创新大会,微纳米机器人分会场特邀报告

15.     2019ICMNM国际微纳马达大会,微纳机器人分会场主题报告

16.     2017 ICMNM   国际微纳米机械会议特邀报告

17.     2018 MHS国际微纳米系统与人类科学大会特邀报告

18.     2018 国际智能医疗与医药大会大会主题报告

 

 Curriculum   Vitae (CV)

  Personal resume

Lin   FENG Associate Professor, doctoral tutor, received   the Master of Eng. degree from the Tohoku Univ. Japan in 2011. He received   Dr. of Eng. from Nagoya University in 2014. Since 2014, he was research   fellow of Department of Micro System Eng., Nagoya University and hired by   JSPS by Japanese government. Since 2015, he is researcher of Department of   Intelligent Transportation System (ITS) in Nissan Motor, Japan.

Since   October 2016, he is Associate Professor of Department of Mechanical Science   & Engineering, Beihang University. He is mainly engaging in the research   fields of micro- and nano-robotics and its application to the micro- and   nano-assembly and cell manipulation, bio-automation systems, medical robotic   systems, Micro and Nano Electro Mechanical Systems, intelligent robotic   systems.

  Research Fields

    Current Major Research Area: Micro- and   Nano-Robotics and Intelligent Systems, Bio-Robotics, On-chip Robotics,   Application to Bio-medical Science and Engineering

The &nbsp; emerging field of robotics and automation at small spatial scales raises new &nbsp; scientific challenges and promises revolutionary advancements in such applications &nbsp; as biology, medicine, industry, micro and nanotechnologies and the &nbsp; environment. Phenomena at the micro and nanoscale are often markedly &nbsp; different from their macroscopic counterparts, and this has strong &nbsp; implications on robotic strategies, algorithms, software and hardware for &nbsp; manipulation, locomotion and control. Cells, biomolecules, and life processes &nbsp; all have characteristic dimensions in the nano and micro range. Artificial &nbsp; devices and systems at the nano and microscales will be able to interact intimately &nbsp; with biological ones, and are expected to lead to new scientific &nbsp; understanding and to new tools for such fundamental tasks as detection and &nbsp; treatment of disease. Moreover, reliable and automatic manipulation of micro- &nbsp; and nanofabricated components is also a big challenge notably for the &nbsp; assembling of various kinds of new devices as MEMS and NEMS.